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SUMMARY

An Office of Naval Research (ONR) project at the Behavioral
Engineering Laboratory (BEL) of Niw Mexico State University has led
to the development of a horizontal display for all-weather vertical
and translational flight in vertical takeoff and landing (VTOL)
aircraft (Roscoe, Hull, Simon, and Corl, 1981; Roscoe, 1982; Roscoe,
Tatro, and Trujillo, 1984; Tatro, Corl, and Roscoe, 1983). This
HOVEPING display provides the pilot with information critical in
taking advantage of the VTOL's inherent ability to fly missions
totally beyond the capabilities of fixed-wing airplanes.

Before attemptiig to make the HOVERING display operational, the
critical elements for pilot performance must be experimentally
identified and optimized across various mission scenarios. To
achieve this goal, a holistic experimental philosophy has been
adopted by BEL whereby as many potentially critical real-world
variables as possible are experimentally tested to evaluate their
absolute contributions to the total variance in system performance.
To the extent the goal of a holistic investigation is achieved, the
potential for biased data will be reduced to a minimum and
predictability to real-world situations will be achieved (Simon,
1977).

This approach is not without precedent, with problems in
research, development, and manufacturing frequently necessitating the
screening of multiple variables to identify the critical factors
(Blodgett, 1957; Cragle, Myers, Waugh, Hunter, and Anderson, 1955;
Day, 1949; Davies and Hay, 1950; Wilburn, 1963). To date, however,
human factors investigators have been slower to adopt this philosophy
along with its numerous benefits, depending instead on traditional
factorial analysis of variance methods. Among notable examples,
however, a multifactor study was conducted to identify those display
dynamic characteristics critical to pilot performance with the
HOVERING display (Tatro et al., 1983; Tatro and Roscoe, 1985).

Tatro and his associates screened eight potentially critical
factors in a 30-second standard instrument departure (SID) procedure.
Pilot performance was evaluated in terms of crosscourse, alongcourse,
and vertical tracking error with magnification factor (MF), control
gain (CG), control order (CO), altitude cottrol gain reduction factor
(GR), tracking mode (TM), flight-path prediction time (PT),
prediction order (PC), and initial position error (IP) as independent
experimental variables. CO and PT accounted for 45 percent of the
crosscourse tracking variance. For alongcourse tracking, MF, CO, CG,
and TM accounted for 54 percent of the error variance. And finally,
CO, PT, and TM along with various interactions accounted for 60
percent of the variance in altitude tracking.

Thus, five factors (CG, CO, MF, PT, and TM) accointed for most of
the performance variance. Once the most critical fac;ors have been
identified, the optimization process can start, the end product of
which is a multiple regression model, or set of models for the



various dependent variables in different flight scenarios. Such a
model indicates not only where optimum performance occurs but also how
performance deteriorates with departures from optimum. In the
present study, this model optimization process was carried out in the
following way. The first step was to settle on a general display and
control system configuration in which the numerical values of the
independent variables had not been fixed.

For the HOVERING display, the function can be expressed as

P = f(CG, CO, MF, PT, TM)

where P is an index of pilot performance as a function of the five
previously identified critical factors. This function is then
minimized (tracking error near null) by a computational search for
the optimum variable levels. Before evaluating any relationsnip, an
experimental strategy must be employed that will economically and
holistically estimate pilot performance. Only after the function is
empirically derived can classical optimization techniques be used to
evaluate the function.

This has been accomplished through the use of Response Surface
Methodology (RSM) techniques to develop a multiple-regression model
of VTOL pilot performance for each of three flight tasks, or
scenarios, composed of different combinations of representative
vertical and translational flight maneuvers. Once empirical
models were estimated, the functions could be evaluated using
classical optimization techniques such as canonical analysis,
computational searches, and graphical analysis to obtain the optimum
operating conditions for each of the critical factors.

INTRODUCTION
Background

A conceptual analysis and review of instrument flight problems
in piloting VTOL aircraft, including helicopters, preceded the
development of a generic VTOL simulation and the initiation of an
experimental investigation of critical design variables in forward-
and sideward-locking vertical situation displays and downward-looking
horizontal situation displays (Figure 1). The vertical displays
are large, flat plasma screens on which computer-animated contact
analog symbology is presented in real time, and in the case of the
downward-looking display, altitude and vertical rate information are
effectively integrated with horizontal positions and rates to achieve
accuracy and stability of vertical and transitional flight control.

In the BEL MicroGraphic VTOL Simulator, alongcourse and
crosscourse translational rates and/or accelerations (depending on
the mode in effect) are controlled by a three-axis, spring-centered
control stick mounted on the right-hand arm rest (see Figure 1).
Alongcourse tracking is controlled by fore and aft stick displacement
from a center dctcnt, and crosscourse tracking by left and right

stick displacement. Rotating (twisting) the stick about its vertical
axis controls the vehicle's yaw (crab) angle relative to the
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horizontal velocity vector. Vertical flight is regulated by a
vertical speed control (VSC) operated by the pilot's left hand. The
vertical speed control is spring-centered, viscously damped, and is
operated by displacing the stick upward to ascend and downward to
descend, similar to a collective control in a helicopte..

The vehicle's heading in the horizontal plane is displayed by a
rotating compass roe that responds to both crosscourse control
inputs and weather-vaning of the vehicle due to the effects of
relative wind (Figure 2). A turn-rate index line is shown relative
to top-dead-center of the display so that a desired heading can be
captured by matching this index with the eesired position on the
rotating compass rose. Crosscourse and alongcourse rates and/or
accelerations are displayed by a position predictor. For vertical
flight control, the information provided by the HOVERING display
includes a present altitude indicator, imminent altitude predictors,
desired altitude goal bars, and both desired and actual vertical rate
indicators (Figure 3).

Compasn Rose

Turn Rate Indicato Oistant Hover Poin.

Instantanlous 0 Next Hover Poin
Oesired-Position
Vernier

Flight Path Predictor

Goal Altitude
Goel Altitude

Altitude Scale 2000lu
4000 40 00 InI IeI

0* Attitude Scale

Oesited

Venical Rate-
Field Indicators
(OVA) 9 Present Altitude

Actual Inslantaneious
Vertlical Rate- Altitude

Field Indicators Desired Course Goal Bars

(i)I Superposed
on OVR

Figure 2. Present configuration of the HOVERING display.

For lateral and longitudinal control, the pilot is presented
with symbology representing a de.sired flight path, next hover point,
and distant hover point, shown in Figure 4. This presentation allows
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the pilot a view otf where the aircraft has been and where it's going.
The "big picture" essentially provides a backdrop against which more
precise tracking takes place. The precise translational tracking
symbols consist of a vehicle target cross, a kite-like flight.-path
closing-rate predictor, and a sensitive instantaneou. desired position
vernier (magnified) indicator. The pilot's task in tr~rtslational
controjl is to align the vehicle with the vernier target cross
using the closing-rate predictor as a guide for control inputs.

Vertical Ave
Field Indicutors-
(OVA I

4000'I 4I. *'<4 000

Actual
Vrtical Rate
Field Indicators
(VRil -

OVR Superpoedon VRI Altitude
Predictor

x
_., Altitude

Indicacor

4000' 4000

Altitude Goal 8.4s

Figure 3. Vertical flight information provided by the HOVERING
diLsplay.
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Ingaunedous Distnt Hover PointDesired Position
Vernier •Next Hover Point

- Desired Course

Q 0

C

Figure 4. The big picture and the precise tracking symbols in
the HOVERING display.

The present altitude indicator is an octagonal box that dilates
as altitude increases and constricts as altitude decreases, as shown
in Figure 3. Altitude (size of the octagonal box) is read against a

fixed scale emanating from the center of the display left and right
to the momentary limits of the scale at the display's outer edge.
The scale limits automatically change by a ratio of 4 to 1 as the

simulated aircraft ascends through the momentary limits and as it
decends within the limits of the next larger scale, as depicted in
Figure 5. Altitude goal bars (AGBs) provide an indication of

instantaneous desired altitude. The pilot's task is to keep the
octagonal box aligned within the altitude goal bars. The altitude
goal bars and the octago-31 altimeter move independently; hence,
altitude control reduces to a basic pursuit tracking task.
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Figure 5. Example of' altitude scale changes in the HOVERING
display.

Desired vertical rate-field indicators (DV~s) consist of four
sets of bars that flow outward to display desired rate cf climb and
inward for desired rate of descent. The actual vertical rate
indicators (VRIs) consist of four sets of bars superposed on, but
perpendicular to, the DVRs. The flow of both the desired and actual
vertical rate indicators matches that of the octagonal altimeter;
outward flow indicates a desired or actual rate of climb, and inward
movement indicates desird or actual rate of descent.



Exne'imental Variables

Those five variables found to be critical in the screening
study had a direct influence on the usefulness of the aforementioned
aspects of the HOVERING display. The magnification factor of the
vernier deviation indicator had the largest single effect,
accountins for 25 percent of the variance in both alongcourse and
crosscourse tracking. As magnification increased, tracking became
more precise. However, as magnification increases, a tradeoff in the
acceptable control/display ratio occurs. At higher magnifications,
control gain must be reduced to maintain an acceptable ratio. Thus
an optimum combination between control gain and magnification must
be found for the various flight tasks.

Control gain is of major importance in the optimization
procedure. High control gain results in faster target acquisition
but less time on target. Low control gain accommodates the fine
adjustments needed for keeping on target but causes slower target
acquisition. Thus a compromise is needed between the two extremes.
In a flight task such as an intercept approach, high gain would be
preferable; while in a sea-rescue mission, low gain would help the
pilot. Thus tne optimum sensitivity of control needs to be a
compromise between the high gain required to reduce acquisition
time and the low gain required for accurate fine adjustments
(Poulton, 1974), yet at the same time being compatible with the
magnification factor in use.

Control order proved to be important in the screening study for
all three dimensions, with second-or cr ccntrol being most
effective. In the literature on tracking experiments involving
control order, some experiments show first-order control superior,
while other studies indicate second-order control to be easier
(Poulton, 1974). These contradictory results are most likely
task-related, and such being the case, control order needed to be
optimized across various flight scenarios.

Prediction time was also found to be a significant contributor
to the observed performance variance. Optimum prediction time has
been found to vary from task to task (Roscoe, 1980; Tatro et a!.,
1983). However, according to Beringer, Williges, and Roscoe (1975),
short prediction times produce a tendency for overcontrolling the
vehicle; the longer the prediction time, the smoother and slower
the control inputs. Hence, short prediction times were better with
large err--s, and long prediction times with small errors. Thus
prediction time needed to be evaluated across mission scenarios,
especially with the addition of an altitude predictor since the
completion of the screening phase.

The last critical variable in the screening study was tracking
mode. Pursuit tracking has consistently been shown to be superior
to compensatory tracking; however, practical limitations have
dictated the use of compensatory presentations. In pursuit tracking,
independent indices of both target and vehicle movement are presented

8



against a common fixed frame of reference, whereas in compensatory
tracking only the relative position of target to vehicle (or vice
versa) is displayed, thereby resulting in a single index of error.
Based on the work of Bauerschmidt and Roscoe (1960'i, the HOVERING
display has a feature that transforms the compensatory tracking
presentation into what has been termed a quasi-pursuit display.

In the quasi-pursuit tracking presentation, the position error
is allotted to both the target and vehicle (instead of the standard
single-error compensato-y configuration), creating an appearance of
independent movement. In the screening study, a target-referenced
compensatory (TRC) presentation, a vehicle-referenced compensatory
(VRC) presentation, and a 50-percent-TRC/50-percent-VRC (quasi-
pursuit) presentation were compared. The 50/50 mode resulted in
significant improvement in translational tracking. Since the
fraction of error allotted to either the target or vehicle can be
mianipulated, and because this display innovation has not been
systematically investigated, tracking mode was included as an
experimental variable.

Response Surface Methodology

In the optimization of a given system, an investigator's prime
concern is the establishment of a quantitative relationship between
human performance and a set of system parameters. Once the
quantitative relationship has been established, the irvestigator is
able to determine the level of performance expected for given levels
of the system parameters and, conversely, to determine the levels of
the system parameters required to maintain performance at a
prescribed level. The estimated function of system parameter levels
to levels of performance is known as the response surface.

The procedures used to investigate response surfaces were
orignally developed by Box and Wilson (1951) for use in chemical
research to determine the optimum combination of variables to
produce the maximum yield of a chemical process. Response surface
methodology (RSM) has since been shown to be practice, in
psychological research, especially in studies pertaining to human
performance (Beringer, 1979; Clark, 1976; Clark and Williges, 1972,
1973; Meyer, 1963; Randle, Roscoe, and Petitt, 1980; Roscoe and
Eisele, 1980; Scanlan, 1975a, 1975b; Scanlan and Roscoe, 1980;
Simon, 1970; Williges and Simon, 1971).

Among the numerous benefits from the use of RSM, the most
notable is its sampling economy (Simon, 1970). Response surface
designs are planned to minimize redundancy and to limit data
collection to that really necessary (Simon, 1973). This is
accomplished by collecting the fewest data sufficient to estimate the
coefficients of the lowest.-degree polynomial that yields an
acceptable fit. For most behavioral response surfaces, a second-
degree polyno)mia1 eems to be adequate (Clark, 1976). Since result3
from the screening study indicated a bow in the data. this assumption
would seem to be appropriate here.

9



In the current experiment with five factors, following
traditional psychological methodology, a 35 factorial design with a
resulting 243 data points would be required to estimate the second-
order polynomial. Response surface designs, on the other hand, are
built on the theoretical assumption that a minimum of N data
collection points are required to write a polynomial of N
coefficients (Simon, 1970). Thus with five factors, a minimum of 21
observations are required to estimate a second-order function, an
enormous saving in time, cost, and resources. The loss of
information in the response surface design, due to fewer observations,
is limited to those interactions involving more than two factors that
generally are negligible (Box and Hunter, 1957).

As an alternative to the 3K factorial designs, Box and Wilson
(1951) have devised a class of composite designs, of which the most
pertinent to human factors research is the central-composite
design (CCD). The central-composite design is a 2K factorial or
fractional factorial (K !:5) augmented by additional strategic points
to allow estimation of the second-order coefficients. For the sake
of simplicity, the building of a central-composite design in three
variables will serve as an example.

If instead of the five factors to be evaluated, we were to
investigate just magnification factor, prediction time, and control
order, a full 33-factorial experiment consisting of 27 data points
would normally be conducted. As an alternative, a 23-factorial
experiment, depicted as a design matrix in Table 1, could be
aug:.ented with seven additional data points, shown in Table 2, to
construct the central-composite design. The result, illustrated
in Figure 6, is a cube consisting of the factorial portion of the
design, a center point, and six axial or star points.

TABLE 1
Coded-Value Coordinates of Data
Points in a Full 23 Factorial

X 1 X2  X3

+1 +1 +1
-1 +1 +1
+1 -1 +1
-1 -1 +1
+1 +1 -1
-1 +1 -1
+1 -1 -1
-I -1 -1

10
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TABLE 2
Coded-Value Coordinates of Data
Points to Augment the 2 3 Factorial

xI  x 2  x 3

+0 0 0
0 0K

0 -C<
O oX 0
o 0 -
0 0 +OC

The formula for the number of data points in a basic CCD is:

2 K (2*K + 1), for K: .4

and K-i
2 + (2*K + 1), for K;:5.

Each factor is now sampled at five levels with an enormous reduction
in data collection. This saving is magnified as the number of
factors increases, as shown in Table 3. For studies involving five
or more factors, a fractional factorial sampling is used instead of
the full factorial, thereby yielding even more economy.

TABLE 3
Comparison of the Number of Data Points Required Between a
Three-Level Full Factorial and a Basic Central-Composite Design

Number of Data Points

Number of
Factors, Full Basic

K Factorial CCD Saving

2 9 13 -4
3 27 20 7
4 81 31 50
5 243 32* 211
6 729 53* 676
7 2187 920 2095

CCD designs marked with * indicate a fractional factorial is used.



A second-order polynomial can now be estimated. If repeated
observations are taken at the cenLer poLnt, as illustrated in Figure
7, an estimate of experimental er'or variance can be calculated to
test the significance of the derived polynomial and each of its
components. The final step in the construction of a central
composite design is the selection ofo4 to establish the positions of
the axial star points.

The value of o should be selected with the design property of
rotatability. A design s said to be rotatable when the variance cf
the estimated response M) is a function of the distance from the
center of the design, regardless of the direction (Box and Hunter,
1957). Thus the information obtained from two points equidistant
from center will be equal. This feature ia highly desirable because,
until the response surface is evaluated, the importance of each point
in the experimental design is unknown. The values of a that result
in a rotatable CCD are given in Table 4.

TABLE 4
Rotatable, Second-Order Central-Composite Design Statistics

Number of Observations in:

Number of
Factors, 2K Factoria] 2K Star Center Total v. Value for

K Portion Portion Points esign Rotatability

2 4 4 5 13 1.414
3 8 6 6 20 1.682
4 16 8 7 31 2.000
5 16 (1/2 replicate) 10 6 32 2.000
6 32 (1/2 replicate) 12 9 53 2.378
7 64 (1/2 replicate) 14 14 92 2.828

A second important feature of the CCD is the number of repeated
center-point observations. This number is selected to obtain uniform
or near-uniform precision. Uniformity refers to the idea that the
quality of information (the reciprocal of the variance) at any point
from the center of the design to the vertices of the hypercube
portion of the experimental space should be equal (Simon, 1970). The
number of center points has a direct effect on the information
profile of the experiment. The appropriate number of center points
to obtain near-uniform precision is given in Table 4. For a more
comphrehensive review of uniform precision ane rotatability in the
CCD, see Box and Wilson (1951) and Box and Hunter (1957).

To obtain the maximum benefits from the CCD, independent and

dependent variables must be continuous, quantitative factors. In this
way a polynomial model can be derived through the use of least-
squares techniques. Once the regression equation has been estimated,

13



an analysis of' variance is conducted on the adequacy of the maodel to
fit thle data and the 3ignificance of' the contributions of the
individual coefficients. To explore the estimated "unction further,
graphical analyses, canonical reduction, and various optiinizational-
searches can then be employed.
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METHOD

Mission Scenarios

Five critical variables affecting pilot performance in three
flight tasks or scenarios were experimentally manipulated. Each
flight was to be completed in 35 seconds.

In Scenario 1, subjects were presented with a VTOL takeoff task
involving precise altitude control with some crosscourse
manuevering. For the altitude profile of the flight, subjects
initially started from a stationary point on an aircraft carrier.
During the first four seconds, the aircraft was to ascend to 15 feet
and fly level for five seconds. During the last 26 seconds of
flight, the aircraft was to ascend rapidly from 15 feet to 400 feet,
holding a constant heading away from the ship.

Scenario 2 involved a terrain-following and landing task calling
for precise control in three dimensions. The altitude subtask
involved a level-descend-level-descend sequence starting at 100 feet,
dipping below 60 feet, and then descending to zero feet. In this
sequence the pilot had to negotiate one scale change when descending
through the 60-foot altitude. For the translational subtask, a
cruise-bank-cruise-bank-cruise sequence was followed, calling for
precise crosscourse and alongcourse tracking.

F

Finall,, in Scenario 3, the standard instrument parture task
used in the screening study (Tatro et, al., 1983) was reevaluated to
confirm or refine the previous results and estimate the quadratic
components of the response surfaces. The task involved a climbing
turn to the right from 400 to 950 feet in altitude and 0 to 35
degrees in heading.

Subjects

Twelve right-handed male Introductory Psychology students were
selected from a larger number who were first pretested on the
HOVERING display in the following manner: Altitude symbology was
turned off, resulting in a two-dimensional translational task. A 35-
second course consisted of a left turn at a rate of 1 degree per
second. Potential subjects flew ten trials, with the average of the
three best consecutive trials serving as a baseline matching score.

Of the 20 potential subjects tested, 12 were selected to form
four stratified groups of three subjects each, respectively matched
to minimize within-group and maximize between-group variances. One
subject from each group was then assigned to each of the three
experiments, one experiment for each of the three scenarios. This
matching procedure was designed to reduce bias due to subject
differences in initial tracking and time-sharing ability.

15



Experimental Design

For each of the three flight scenarios, the same five-factor
central-composite design was used. A Resolution-V (25-1 ) fractional
factorial sampling (Simon, 1973) was augmented with axial and center
points to complete the CCD. With Resolution-V, main effects are
confounded with third-order (four-factor) interactions, and first-
order (two-factor) interactions are confounded with second-order
(three-factor) interactions. Because three-factor and higher
interactions are usually negligible, main effects and first-order,
terms are essentially unconfounded. The defining contrast for the
fractional factorial is: I = abode, which is selected to create the
fractional and to identify the aliasing (confounding) of the
estimated effects.

The fractional factorial samples along with the aliases for each
effect are given in Table 5. The value of c chosen to identify the
axial points in the CCD was 2.0, which results in a rotatable
design. To obtain near-uniform precision in the CCD, six center
points were added to the fractional factorial. Thus, for each of the
optimization experimonts, there were 32 distinct observation points,
allowing estimation of second-order regression equations for each
dependent measure for each flight scenario. The total design in
matrix form is given in Table 5.

Variable Levels

One advantage of the CCD is that the data obtained are readily
transfcrmed for ease of interpretation and analysis. Each of the
five variables (tracking mode, magnification factor, prediction time,
control order, and control gain) were transformed and assigned to
five coded levels (-2, -1, 0, +1, +2). For the spacing between
levels of control order to be equal in terms of effects, a logrithmic
transformation was deemed appropriate based on the screening study
(Tatro et al., 1983), while the other four variables were linearly
transformed. The real-world ranges and transformations are provided
in Table 6. Experimental variable real-world levels and their
association with the five-level experimental design are shown in
Table 7.

Performance Measures

There are four dependent measures of pilot performance for each
flight task. As in previous studies, log RMS error was used to
evaluate altitude (vertical), crosscourse (lateral), and alongcourse
(longitudinal) tracking. The log RMS error distribution has been
empirically shown to yield a good approximation of a normal
distribution and homogeneous variances (Tatro et al., 1983) and hence
justifies the assumptions inplIuIt with least-squaror rcgression
techniques.



TABLE 5
Design Matrix for the Five-Factor Central-Composite Design

Condition Variable Effect Alias
a b c d e

1 . . . . .- (1) abode
2 + + + + - abed e
3 - - - + + de abc
4 + + - + abee d
5 + + - - ab ede
6 - - + - cd abe
7 + + - + + abde C
8 - - + - ce abd
9 + - + - - ac bde

10 - + - + - bd ace
11 + - + + + aode b

12 - + - - + be acd
13 - + + - -be ade
14 + - - + - ad bee

15 - + + + + bcde a
16 + - - - + ae bed
17 0 0 0 0 0 center point
18 0 0 0 0 0 center point
19 0 0 0 0 0 center point
20 0 0 0 0 0 center point
21 0 0 0 0 0 center point
22 0 0 0 0 0 center point
23 -2 0 0 0 0 axial point
24 0 -2 0 0 0 axial point
25 0 0 -2 0 0 axial point
26 0 0 0 -2 0 axial. point
27 0 0 0 0 -2 axial point
28 2 0 0 0 0 axial point
29 0 2 0 0 0 axial point
30 0 0 2 0 0 axial point
31 0 0 0 2 0 axial point
32 0 C 0 0 2 axial point
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TABLE 6

Real-World Variable Ranges and Traisformations

Experimental Variable Range Transformation

Tracking mode (percent VRC) 25 to 75 (X-50)/12.5
Magnification factor 50 to 150 (X-100)/25
Prediction time (see) 0.5 to 2.5 (X-1.5)/0.5
Control order 1.2 to 2.0 (X-1.6)/0.2
Control gain (unitless ratios)

longitudinal (1st order) -6000 to -10000 (X+8000)/-I000
longitudinal (2nd order) -100 to -250 (X+175)/-37.5

lateral (1st order) 13000 to 20000 (X-16500)/1750
lateral (2nd order) 600 to 900 (X-750)/75

azimuth (1st order) 0.40 to 1.20 (X-0.8)/0.2
azimuth (2nd order) 0.20 to 0.60 (X-0.4)/0.I

vertical (1st order) -1500 to -2500 (X-1000)/250
vertical (2nd order) -50 to -120 (X-60)/17.5

TABLE 7
Experimental Variable Levels

Experimental Variable Variable Levels

(-2) (-1) (0) (+1) (+2)

(a) Tracking mode (percent VCR) 25 37.5 50 62.5 75
(b) Magnification factor 50 75 100 125 150
(c) Prediction time (see) 0.5 1.0 1.5 2.0 2.5
(d) Control order 1.2 1.4 1.6 1.8 2.0
(e) Control gain (unitless ratios)

longitudiaal (1st order) -6000 -7000 -8000 -9000 -10000
longitud7rial (2nd order) -100 -137.5 -175 -212.5 -250

lateral ,st order) 13000 14750 16500 18250 20000
lateral (2nd order) 600 675 750 825 900

azimuth (19t order) 0.40 0.60 0.80 1.00 1.20
azimuth (2nd order) 0.20 0.30 0.40 0.50 0.60

vertical (1!;t order) -500 -750 -1000 -1250 -1500
vertical (2nd order) -25 -42.5 -60 -7.S -95
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The fourth dependent variable consisted of a log composite error
vector score of the form:

log E/X2 + y2+ Z 2

N

in which X, Y, and Z are position errors and N is the number of
position error samples taken. This composite score served as an
overall index of display performance, whereas the other three
measures served to isolate effects of the various configurations on
the specific subtasks (altitude, crosscourse, and alongcourse
tracking).

Procedure

For each experiment, subjects flew ninety-six 35-second flight
trials on each of three consecutive days. Each flight was followed
by a 10-second intertrial interval. The first two 12-minute
sessions served as training sessions, followed on the third day by a
72-minute testing session. Each subject was tested in a different
(partially counterbalanced) serial sequence as seen in Table 8.

In the within-subject design used in each of the three scenario
experiments, careful attention was given to possible biases that
might result from intraserial transfer effects due to the testing
sequences. The fractional factorial sampling used in this design has
been found by Simon (1977) to be orthogonal to intraserial trends in
the first- and second-order effects, thus effectively counter-
balanced.

Traditional counterbalancing, though, has been shown by Poulton
(1974) to be generally ineffective as a way to reduce or eliminate
sequence effects in tracking stitdies. Thus, t. minimize any
remaining possibility of biases as a result of asymmetrical
transfer, highly trained subjects were used, and two buffer trials
were flown before the test trial with each system configuration.
An unreported experiment at this laboratory has demonstrated the
effectiveness of tnis procedure.

Analysis of Results

The first step in the estimation of the true functional
relationship between experimental variables and response variables is
a least-squares multiple-regression analysis. From this analysis,
multiple-regression equations were derived for the various
perrormance measures and flight scenarios and subsequently used to
determine the true nature of the response surfaces. To evaluate the
adequacy of the multiple-regression models, analyses of variance
were conducted on the models as well as the individual regression
cocTefficienits. anallyses prove information as to the amount
of variance accounted for by each whole model as well as the
contributions of each of the individual experimental factors.
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TABLE 8
Order of Presentation for Each Subject

Order of Conditions

Trials Subject 1 Subject 2 Subject 3 Subject 4

1-3 17 (c) 22 (c) 22 (c) 17 (c)
4- 6 18 (c) 21 (c) 21 (c) 18 (C)
7- 9 1 (f) 16 (f) 16 (f) 1 UM)
10 - 12 2 (f) 15 CM) 15 (f) 2 (f)

- 15 3 (f) 14 (f) 14 (f) 3 CM)
- 18 4 (f) 13 (f) 13 (f) 4 (f)

19- 21 23 (a) 30 (a) 28 (a) 31 (a)
22- 24 24 (a) 29 (a) 27 (a) 32 (a)
25- 27 25 (a) 12 (f) 26 (a) 5 (f)
28- 30 5 (f) 11 ) 12 (f) 6 (f)
31 -33 6 (f) 10 Cr) 11 (f) 7 (f)
34- 36 7 (f) 9 Cr) 10 (f) 8 (f)
37- 39 8 (f) 25 (a) 9 (f) 29 (a)
40- 42 26 (a) 24 (a) 32 (a) 30 (a)
43 - 45 27 (a) 23 (a) 31 (a) 19 (c)
46 - 48 28 (a) 20 Cc) 20 (c) 20 (c)
49 - 51 19 (c) 19 (c) 19 (c) 26 (a)
52 - 54 20 (c) 32 (a) 25 (a) 27 (a)
55 - 57 29 (a) 31 (a) 24 (a) 28 (a)
58 - 60 30 (a) 8 (f) 23 (a) 9 (M)
61 - 63 9 Cr) 7 (f) 8 (M) 10 (M)
64 - 66 10 (f) 6 (f) 7 Cr) 11 Cr)
67 - 69 11 (f) 5 Cr) 6 (C) 12 (f)
70 -72 12 (f) 28 (a) 5 (f) 23 (a)
73 - 75 31 (a) 27 (a) 30 (a) 24 (a)
76 - 78 32 (a) 26 (a) 29 (a) 25 (a)
79 - 81 13 Cr) 4 (f) 4 (f) 13 Cr)
82 -84 14 (f) 3 C) 3(f) 14 (f)
85 - 87 15 (f) 2 (f) 2 (f) 15 (f)
88- 90 16Cr) 1 (M) i () 16 C)
91 - 93 21 (c) 18 (c) 18 Cc) 21 (c)
94 - 96 22 (c) 17 (c) 17 (c) 22 (c)

f = factorial point; c center point; a = axial point



The analyses of the fitted surfaces were further enhanced by
graphically depicting the response surfaces generated by each
experimental factor (linear and quadratic). In this way, regions of
optimum response for each factor could be deduced and used to conduct
further experiments to locate an area of minimum error precisely.
Because of the complex nature of a surface consisting of five
factors, the graphical representation of individual factor response
surfaces is a gross simplification of the overall surface. To take
into account the many interactions along with the linear and
quadratic effects, multiple-regression equations must be reduced to a
simpler form for interpretation. This reduction is called a
canonical analysis of a fitted surface.

The goal of canonical analysis is to restate the original
multiple-regression equation in an easily interpretable form. A
canonical analysis takes place in four stages. The analysis begins
with a translation of the response surface from the experimental
design origin (CCD center point) to the stationary point of the
response surface. The stationary or near-stationary point is
determined by taking the K partial derivatives with respect to each
factor and then solving the K equations. In the present study, five
equations in five unknowns had to be solved to determine the
stationary point of each response surface.

Upon determination of the stationary point, the reponse function
is transformed into an equation expressed in K new variables (W's),
whose axes correspond to the principal axes of the response surface.
This new equation provides a clear picture of the nature of the
response surface as one moves away from the stationary point. The
new response surface equation is called the canonical equation. Tha
cationical equation is deteemined by finding the characteristic roots
or eigenvalues of the second-order symmetrical matrix, consisting of
the quadratic and linear-by-linear interaction terms of the original
multiple-regression model.

With five experimental factors, expansion of the second-order
matrix yields five characteristic roots. These characteristic roots
are arranged in ascending order to determine the coefficieaits of the
five new variables (W's), with the estimated response at the
stationary point determining the mean of the canonical equation. The
signs and magnitudes of the various coefficients then reveal the
nature of the response surface. Since the response surface is now
expressed in terms of new variables, it becomes beneficial to
ascertain the relationship between the old variables and the new
canonical variables.

This relationship takes the matrix form: W = MZ, where M
represents the 5 X 5 matrix of normalized eigenvectors corresponding
to each characteristic root; Z represents the 5 X 1 matrix of x-
values minus the corresponding stationary point x-values; and W
represents the 5 X 1 matrix of W values to be determined. In the
fourth stage of the canonical aneysis, the canonical eqiation and
the x to W transformations are used to find either the values of the
x-variables that result in a given operating condition or those that
result in an optimum operating condition.
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RESULTS

Takeoff Scenario

Each of the four dependent variables (lateral, longitudinal,
vertical, and radial errors) was analyzed separately.

The regression analyses yielded equations that relate the
dependent variables to the second-order combination of the coded
values of the five independent variables. The equations together
with summaries of their associated analyses of variance and graphic
illustrations are presented in the APPENDIX. The illustrations
depict the error values predicted by the regression equations as a
function of each of the iignificant independent variables when all
other variables are at their center-point values, including pseudo
three-dimensional plots of the significant two-way interactions.

The F-ratios indicate that the overall model is reliable for
each dependent variable, with R 2's of 0.44, 0.42, 0.39, and 0.46,
respectively. In addition, tests were made on the individual
coefficients of each regression equation. For lateral log HMS error,
the significant terms are CO, PT 2, CO 2 , CG 2 and PTxCG; f 2 2
longitudinal log RMS error, significant terms are CO, MF PT , CO2,
CG2 , TMxCG, and PTxCG; for vertical log RMS error, CO, CO , PTxCG,
and COxCG were significant; while for radial log RMS error, CO, ?T,
C02, TMxCG, and PTxCG reached significance.

The Residual sum-of-squares waz.partitioned into Replications,
Lack-of-Fit, and Subjects terms. Replications was used as an
estimate of experimental error for all F-tests. The reliable
Subjects effect for all four dependent variables indicates that the

behavior of at least one of the subjects differed from that of the
others. The existence of a significant Lack-of-Fit term means that
either higher-order models would better approximate the response
surfaces or that an additional factor or factors should be included
in the models.

The canonical analysis of each fitted surface was then conducted
to describe the nature of the response surfaces more intelligibly.
The stationary point for each of the four system3 is given in Table
9. The canonical analyses yielded the following four equations that
relate the dependent variables tc five new canonical variables:

log RMSE,lat = 1.17 - 0.03W1 2 + 0.03W22 + 0.03W3 2 + 0.14W4 2 + 0.23W5 2 .

log RMSE,lon = 1.29 - 0.05W, 2_ 0.02W2 2 + O.06W3 2 + 0.08W4 2 + 0.15W5 2 .

log RMSE,ver = 1.16 - 0.IOW1 2 _ O.00W2 2 + 0.03W3 2 0 .0 3 W4 2+ 0.11W5 2.

log RHSE,rad = 1.63 - 0.02W1 2+ 0.01W2 2 + 0.04W32+ 0.1OW42+ 0.14W5'.



TABLE 9

Response Surface Stationary Points for the Takeoff Scenario

log RMSE TM PT CO CG Y

Lateral 0.21 0.42 -0.03 0.55 -0.35 1.!7

Longitudinal -0.79 0.39 0.63 -0.48 0.62 1.29

Vertical 0.03 -0.65 0.57 -0.25 0.01 1.16

Radial -0.07 1.54 1.44 -0.47 0.94 1.63

As indicated by the signs of the coefficients of the canonical
equations, all four response surfaces are of the saddle-poin type.
For lateral and radial log RMS error, moving along the W1 axis
results in decreases in Y, while moving along the W2, W3, W4, and W5
axes results in increases in Y. For longitudinal and vertical log
RMS error, moving along the W1 and W2 axes results in decreases in Y,
while m6ving along the W3, W4, and W5 axes results in inereazas in
Y. The magnitudes of the W coefficients reveal that, for lateral and
radial log RMS error, the surface is attenuated along the WI, W2, and
W3 axes; for longitudinal log RMS error, the surface is attenuated
along the W2 axis; whereas for vertical log RMS error, attenuation
occurs along the W2, W3, and W4 axes.

Once the surfaces have been described in terms of the new
canonical variables (W's), the relationship between the old x-
variables and the new W-variables is needed. The four matrix
equation transformations are given in Table 10. With the response
surfaces thus described, it becomes possible to locate those values
of the coded independent variables that result in an optimum
operating condition.

For lateral log RMS error, these coded-values are: TM = 0.2, MF
- 0.4, PT = 2.0, CO z 0.5, CG z -0.3, with a predicted error of 1.11
or 12.88 feet. For longitudinal log RMS error, the optimum operating
condition results at the cod'd values: TM = -0.8, MF = 2.0, PT =
2.0, CO = -0.5, CG = 0.6, w.h a predicted error of 1.08 or 12.12
feet. For vertical log RMS error, an optimum condition occurs at the
points: TM = 0.1, MF = 2.0, PT = 2.0, CO = -0.2, CG = 0.0, with a
predicted error of 0.40 or 2.52 feet. Finally, fcr radial error, the
optimum values are: TM = -0.1, MF z 1.5, PT = 1.4, CO = -0.5, CC
0.9, with a predicted error of 1.63 or 42.29 feet.
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TABLE 10
X to W Transformation Matrix Equations for the Takeoff Scenario

Lateral

WI 0.27 -0.01 -0.89 0.29 0.21 xl - 0.21
W2 -0.63 0.75 -0.13 0.16 0.08 x2 - 0.42
W3 = -0.44 -0.30 -0.39 -0.31 -0.69 x3 + 0.03
W4 0.00 -0.10 0.18 0.87 -0.45 xU - 0.55
W5 -0.58 -0.59 0.02 0.20 0,53 x5 + 0.35

Longitudinal

WI -0.25 0.91 -0.01 -0.27 0.20 xl + 0.79
W2 0.02 -0.02 0.99 -0.10 0.07 x2 - 0.39
W3 0.8b 0.38 0.04 0.37 -0.15 x3 - 0.63
W4 0.07 -0.09 -0.04 0.31 0.94 x4 + 0.48
W5 0.48 -0.17 -0.11 -0.83 0.22 x5- 0.62

Vertical

Wi -0.15 -0.80 -0.47 0.33 0.07 xl - 0.03
W2 0.01 -0.58 0.71 -0.39 -0.08 x2 + 0.65
W3 0.33 -0.09 -0.51 -0.77 -0.05 x3 - 0.57
W4 0.13 .-0.02 -0.04 0.15 -0.98 x4 + 0.25
W5 0.90 -0.09 0.13 0.35 0.17 x5 - 0.01

Radial

W1 -0.59 -0.63 0.35 0.36 0.06 xl + 0.07
W2 0.30 -0.55 -0.74 0.23 -0.00 x2 - 1.54
W3 0.30 -0.53 0.30 -0.70 -0.21 x3 - 1.44
W4 0.11 0.06 0.11 0.33 -0.93 x4 + 0.117
W5 0.68 0.08 0.47 0.46 0.30 x5 - 0.94

Landing Scenario

For the landing scenario, the regression equations, analysis of
variance summaries, and graphic illustrations are also presented in
the APPENDIX. The F-ratios indicate that the overall model for each
dependent variable was significant with R's of 0.38, 0.32, 0.29, and
0.43, respectively. F-tests on the individual coefficients of the

four regressioa equations indicate that, for lateral log RMS error,
MF, CO, anj CO were significant; for longitudinal log RMS error, CO,
PT, and CO reached significance; significant terms for vertical log
RMS error wsre PT, C9 , PT, and CO; while for radial log RMS error,
CO, rF , PT , aid CO were significant.

The partitioned Residual sum-of-squares indicates a reliable
Subjects effect for all four dependent variables, meaning that the
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behavior of at least one subject differed from that of the others.
The significant Lack-of-Fit term for lateral, longitudinal, and
radial log RMS error would indicate the inclusion of additional terms
is needed in the models, either higher-order terms or additional

factors. For vertical log RMS error, the model seems to account for
all the variance possible, excluding subject factors.

The stationary point for each of the four response surfaces is
given in Table 11. The nature of the systems around the stationary
points is determined by the four canonical equations:

log RMSE,lat = 1 16 - .03W1 2 - 0.02W2 2 + 0.02W3 2 + 0.04W4 2 + 0.13W5 2.

log RMSE,lon = 1.34 - 0.05W, 2 - 0.02W2 2 + 0.02W3 2 + 0.04W4 2 + 0.09W5 2.

log RMSE,ver = 0.96 - O.0?W1 2 _ 0.00W22 + O.OZW3 2 + O.03W4 2+ 0.06W5 2 .

log RMSE,rad 1.40 - 0.04W1 2 - 0.0)W2 2 + O.02W3 2 + 0.04W442  0.11W5 2 .

TABLE 11
Response Surface Stationary Points for the Landing Scenario

log RVSE TM MF PT CO CG Y

Lateral 0.42 0.66 0.04 -0.39 0.39 1.15

Longitudinal 0.68 0.06 0.21 -0.41 -0.35 1.34

Vertical 0.06 -0.07 -0.51 -1.22 -1.89 0.96

Radial 0.28 0.15 0.25 -0.53 0.02 1.40

The signs of the W coefficients of the canonical equations

reveal that all four surfaces are saddle-point type. For all four
response surfaces, moving along the WI and W2 axes results in
decreases in Y, while moving along the W3, W4, and W5 axes results in
increases in Y. For lateral and longitudinal log RMS error, the
magnitude of the W coefficients shows that the surface is attenuated
along the W2 and W3 axes, whereas for vertical and radial log RMS
error, the surfaces appear to be relatively uniform.

To transform the old x's to the new canonical W variables, the
matrix equations given in Table 12 were solved. Once the x to W
relationships and the nature of the response surfaces are known,
optimum operating conditions can be found.

For lateral log RMS error, the coded values are: TM = 0.4, MF =

0.7, PT = 0.1, CO = -0.4, CG = 0.3, with a predicted error of 1.16
or 14.40 feet. For longitudinal log RMS error, the optimum operaing
condition results at the coded values: TM = 0.0, MF = 1.0, PT = 0.2,
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CO = -1.0, CG = -0.5, with a predicted error of 1.30 or 19.79 feet.
'or vertical log RMS error, an optimum condition occurs at the
points: TM = 0.1, MF = -0.1, PT = -0.5, CC = -1.2, CG = -1.8, with
a predicted error of 0.96 or 9.12 feet. Finally, for radial log
RMS error, the optimum values are: TM = 0.3, M- = 0.1, PT = ...0, CO
= 1.0, CG = 0.0, with a predicted error of 1.28 or 18.90 feet.

TABLE 12
X to W Transformation Matrix Equations for the Landing Scenario

Lateral

WI 0.81 0.51 -0.26 0.08 0.09 xl - 0.42
W2 O.11 0.15 0.44 -0.86 0.19 x2 - 0.66
W3 = -0.14 -0.12 -0.6 -0.43 -0.03 x3 - 0.04
W4 0.10 0.09 0.09 -0.14 -0.98 x4 + 0.39
W5 -0.55 0.83 -0.06 0.05 0.00 x5 - 0.28

Longitudinal

WI 0.72 -0.57 -0.39 0.01 0.06 xl - 0.68
W2 -0.06 -0.23 0.21 -0.95 -0.05 x2 - 0.06
W3 -0.17 0.34 -0.85 -0.24 -0.27 x3 - 0.21
W4 0.09 -0.13 0.20 0.12 -0.96 x4 + 0.41
W5 0.67 0.70 0.20 -0.17 -0.02 x5 + 0.35

Vertical

WI 0.73 -0.38 -0.43 -0.37 -0.03 xl - 0.05
W2 -0.54 0.16 -0.72 -0.36 -0.19 x2 + 0.07
W3 0.07 -0.17 -0.39 0.81 -0.39 x3 + 0.51
W4 0.05 0.18 -0.37 0.27 0.87 x4 + 1.22
W5 0.42 0.88 -0.05 0.01 -0.23 x5 + 1.89

Radial

Wl 0.82 0.54 -0.14 -0.08 0.08 xl - 0.28
W2 -0.03 0.08 0.63 -0.76 0.15 x2 - 0.15
W3 -0.09 -0.12 -0.74 -0.64 -0.14 x3 - 0.25
W4 0.08 0.06 0.20 -0.03 -0.97 x4 + 0.53
W5 0.56 -0.82 0.09 -0.03 0.02 x5 - 0.02

Standard Instrument Departure

For the standard instrument departure scenario, the regression
equations, analysis of variance summaries, and graphic illustrations
are presented in the APPENDIX.

The F-ratios for the SID scenario indicate that the overall
model for each dependent measure except vertical log RMS error was
significant, with R2 's of 0.40, 0.38, 0.17, and 0.38, respectively.
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F-tests on the individual coefficients of the four regression
equations indicated that for lateral log RMS error, TM, F. PT, CO,
CO2, TMxMF, and MFxPT were significant; for longitud+..-l log RMS
error, TM, MF, PT, PT2,CO2, MFxPT, PTxCO, and PTxCG reached
significance; the only significant term for vertical lo EMS error
was C02; while for radial log EMS error, MF, PT, CO, CO , MFxPT, and
PTxCO were significant.

The partitioned Residual sum-of-squares indicates a reliable
Subjects effect for lateral and vertical log EMS error, meaning the
behavior of at least one of the subjects differed from that of the
rest. The significant Lack-of-Fit term for each model indicates the
equations would better approximate the response surfaces with the
addition of higher-order terms or additional factors, especially in
the case of vertical log EMS error.

The stationary point for each of the four systems is given in
Table 13. The four canonical equations describing the nature of the
response surfaces surrounding the stationary points are:

log RMSE,lat = 0.99 - 0.06W1 2 - 0.01W22 + 0.02'W32 + 0.06W442+ 0.1OW52.

log RMSE,lon = 1.29 - 0.03W,2 - 0.00W2 2 + 0.01W3 2 + 0.O 5W42+ 0.1O452.

log RMSE,ver = 1.09 - 0.03W12 - 0.01W22 + 0.01W3 2 + 0.03W4 2 + 0.09W5 2.

log RMSE,rad = 1.32 - 0.03W1,2 +0.001422+0.01W332+ 0.04W42+ 0.O1W5 2.

TABLE 13
Response Surface Stationary Points for the SID Scenario

_o R E TM _F PT CO CG Y

Lateral -0.49 0.05 1.72 -0.23 0.81 0.99

Longitudinal 0.34 -2.37 0.53 -0.54 -1.88 1.29

Vertical -0.33 -0.42 -0.56 -0.20 -0.82 1.09

Radial -0.96 -0.69 1.46 -0.05 -0.49 1.32

All four systems, upon examination of the signs of the canonical
coefficients, seem to be saddle-point type Lsurfaces. For lateral,
longitudinal, and vertical log EMS errors, moving along the W1 and W2
axes results in decreases in Y, while moving along the W3, W4, and W5
axes results in increases in Y. For radial log EMS error, decreases
in Y occur when moving along the W1 axis, whereas increases in Y
occur when moving along the W2, W3, W4, and W5 axes. The magnitudes
of the W coefficients reveal that the surfaces for lateral and radial
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log RMS error are attenuated along the W2 and W3 axes, whereas for
longitudinal and vertical log RMS error, attentuation occurs along
the Wi, W2, and W3 axes.

The matrix equations relating the old x's to the new W variables
are given in Table 14. Optimum operating conditions, as determined
by the x to W relationships and the canonical equations, are P.s
follows: for lateral log RMS error, TM = -1.0, W = 0.5, PT = -1.0,
CO = 1.0, CG = 0.5, with a predicted error of 0.69 or 4.84 feet; for
longitudinal log RMAS error, TM = 0.3, MF = 2.0, PT = 0.5, CO = -0.5,
CC = -1.8, with a predicted error of 1.30 or 19.85 feet; for
vertical log RMS error, TM = 2.0, MF = 2.0, PT = -0.6, CO = -1.0, CG
= -0.8, with a predicted error of 0.89 or 7.78 feet; and finally, for
radial log RMS error, TM = -1.0, MF = 2.0, PT = 1.4, CO = -0.1,
CG = - 0.5, with a predicted error of 1.31 or 19.91 feet.

TABLE 14
X to W Transformation Matrix Equations for the SID Scenario

Lateral

W1 -0.69 0.06 -0.58 0.41 0.00 xl + 0.49
W2 0.60 0.25 -0.18 0.73 0.03 x2 - 0.05
W? = -0.31 -0.31 0.72 0.54 0.01 x3 - 1.72
'! C.05 0.17 0.12 -0.02 -0.98 x4 + 0.23

-0.C4 0.90 0.3,  -0.04 0.18 x5 - 0.81

Longitudinal

W! -0.63 -0.15 -0.74 0.08 -0.15 xl - 0.34
W2 0.55 0.55 -0.49 0.29 -0.28 x2 + 2.37
W3 -0.43 0.32 0.46 0.51 -0.49 x3 - 0.53
W4 -0.16 0.29 -0.03 0.49 0.81 x4 + 0.54
W5 -0.30 0.70 0.03 -0.64 0.08 x5 + 1.88

Vertical

Wl -0.46 -0.66 0.06 -0.57 -0.15 xl + 0.33
W2 -0.48 -0.33 -0.07 0.80 -0.11 x2 + 0.42
W3 0.74 -0.62 0.04 0.17 -0.19 x3 + 0.56
W4 0.02 -0.27 -0.05 0.03 0.96 x4 + 0.20
W5 -0.04 0.03 0.99 0.08 0.06 x5 + 0.82

Radial

Wi -0.56 0.62 -0.51 0.21 -0.06 xl + 0.96
W2 0.64 0.54 0.18 0.48 -0.19 x2 + 0.69
W3 -0.47 -0.25 0.50 0.61 -0.29 x3 - 1.46
W4 -0.06 0.07 o.16 0.30 0.94 x4 + 0.05
,,5 -02 0.50 0.66 -0.51 0.00 x5 + 0.49
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DISCUSSION

As seen in the analyses of variances, the relative-importance of
the five manipulated control and display factors varied greatly as a
function of flight task. This result was anticipated, since the
three flight task profiles imposed vastly different control and %
attentional demands. The landing and takeoff scenarios consisted of
complex sequences of banks and cruises, ascents and descents,
resulting in the emergence of control order (linear and quadratic
components) as the dominant factor. Decreasing the acceleration
component of the control-order fraction resulted in more precise
tracking.

The other major factor in the landing and takeoff scenarios was
the quadratic prediction-time component. As seen in the figures
graphically depicting the response surfaces for prediction time, a

U-shaped surface emerges with short and long prediction times
resulting in increases in tracking error. Again the nature of the
flight ta sks would seem to be the major reason for the shape of the
functions. Short prediction times resulted in overcontrol of the
vehicle when precise tracking was reluired, while long prediction
times resulted in undercontrol of the vehicle.

The relative insignificance of the other three experimental
factors can be attributed directly to the dominance of control
order. When subjects were presented with a display and control
configuration with pure acceleration (second-order) control,
performance deteriorated such that the levels of the other factors
became unimportant. It is believed that if control order were kept
at a fixed optimum level, the other factors would emerge as

significant. This finding reiterates the need for multifactor
experimentation. The interactions among numerous variables are so
complex that a reductionist study would only give an incomplete and
possibly biased account of the response surface.

Results from the standard instrument departure scenario
confirmed the results found in the previous screening study. (Tatro

et al., 1983). All five experimental factors were significant. An
interesting result from this scenario was the fact that the linear
terms of the model accounted for the majority of the variance,
whereas the quadratic compohents of the regression models emerged
significant in the more complex flight tasks. This would indicate
the need for estimating second-order models in approximating surfaces
for complex tasks, which are the norm for VTOL flight.

All three flight scenarios, upon examination of the fitted

surfaces, revealed optimum operating conditions in approximately the
same variable ranges as seen in Table 15. It appears the selection
of the experimental variable ranges and center-point values of the

central composite design provided a good sampling for interpolating
optimum conditions as indicated by the optimum variable ranges and
the minimums of the U-shaped functions for the various factors.
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TABLE 15
Summary of the Optimum Operating Condition Ranges
Across All Three Flight Scenarios

Optimum Optimum
Variabie Coded Range Transformed Range

Takeoff

Tracking Mode (TM) -0.8 to 0.2 40t to 53% VRC
Magnification Factor (MF) 0.4 to 2.0 100 to 125
Prediction Time (PT) 1.4 to 2.0 2.2 to 2.5 seQ
Control Order (CO) -0.5 to 0.5 1.5 to 1.7
Control Gain (CG)

longitudinal (1st order) -0.3 to 0.9 -7700 to -8900
longitudinal (2nd order) -0.3 to 0.9 -164 'to -209

lateral (1st order) -0.3 to 0.9 15975 to 18075
lateral (2nd order) -0.3 to 0.9 728 to 818

vertical (1st order) -0.3 to 0.9 -925 to -1225
vertical (2nd order) -0.3 to 0.9 -55 to -76

azimuth (1st order) -0.3 to 0.9 0.7 to 1.0
azimuth (2nd order) -0.3 to 0.9 0.4 to 0.5

Landing

Tracking Mode (TM) 0.0 to 0.4 50% to 55% VRC
Magnification Factor (MF) -0.1 to 1.0 75 to 125
Prediction Time (PT) -1.0 to 0.2 1.0 to 1.7 sec
Control Order ICO) -1.2 to 1.0 1.4 to 1.8
Control Gain (CG)

longitudinal (1st order) -1.8 to 0.3 -6200 to -8300

longitudinal (2nd order) -1.8 to 0.3 -108 to -186

lateral (1st order) -1.8 to 0.3 13350 to 17025
lateral (2nd order) -1.8 to 0.3 615 to 773

vertical (1st order) -1.8 to 0.3 -550 to -1075
vertical (2nd order) -1.8 to 0.3 -29 to -65

azimuth (1st order) -1.8 to 0.3 0.4 to 0.9
azimuth (2nd order) -1.8 to 0.3 0.2 to 0.4
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TABLE 15, Continued

Standard Instrument Departure

Tracking Mode (TM) -1.0 to 2.0 38% to 75% VRC
Magnification Factor (MF) 0.5 to 2.u 112 to 125
Prediction Time (PT) -1.0 to 1.0 1.0 to 2.0 sec
Control Order (CO) -1.0 to 1.0 1.4 to 1.8
Control Gain (CG)

longitudinal (1st order) -1.8 to 0.5 -6200 to -8500
longitudinal (2nd order) -1.8 to 0.5 -108 to -194

lateral (1st order) -1.8 to 0.5 13350 to 17375
lateral (2nd order) -1.8 to 0.5 615 to 788

vertical (1st order) -1.8 to 0.5 -550 to -1125
vertical (2nd order) -1.8 to 0.5 -29 to -69

azimuth (1st order) -1.8 to 0.5 0.4 to 0.9
azimuth (2nd order) -1.8 to 0.5 0.2 to 0.5

Overall, it appears an optimum operating condition occurs when
tracking mode (TM) = 50% VRC, magnification factor (MF) 110,
prediction time (PT) = 1.7 seconds, control order (CO) 1.6, and
control gain (CG) longitudinal first-order = -7630, longitudinal
second-order = -162, lateral first-order = 15858, lateral second-
order = 631, vertical first-order = -908, vertical second-order =
-54, azimuth first-order = 0.7, azimuth second-order = 0.4, all of
which are very close to the CCD center-point conditic-.

Finally, further experimentation should explore a very limited
range surrounding the optimum operating conditions. In this way the
values can be refined to achieve even more precise tracking. In
addition, other flight scenarios should be evaluated because the
nature of the flight task dictates which variables affect performance
critically. Because of the significant Lack-of-Fit found in all but
one of the regression equations, other variables may have to be
screened to assess their importance. It is believed, though, that
the inclusion of a hypothetical time-sharing "factor" in the model
will account for a majority of the still unaccounted for variance.

Indirect evidence from this experiment supports the existence of
such an intervening variable. Although performance data for the
three flight scenarios were not analyzed collectively, it is evident
that, as task complexity increasad from the standard instrument
departure to terrain following and landing to the instrument takeoff,
the ranges of scores increased as a function of subject ability
levels. The increasing complexity of the flight tasks called for
increasing time-sharing of attention, and time-sharing ability no
doubt contributed heavily to the subj:cts' pretest matching scores.
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.nt mutiple-regression predltioti equations for the various
dependent performance measures on the three tank scenarios serve as
reasonably comphrehensive models of pilot performance in
representative vertical and translational flight maneuvers. Because
the more complex scenarios for terrain following and landing and for
takeoff impose greater time-sharing demands than the standard
instrument departure, a composite model based on radial tracking
errors for those scenarios would be the indicated choice as a guide
in system design. For all variables except prediction time, a single
va e can be selected that falls within the optimum range shown in
Table 15. As in the case of vertical control gain, prediction time
should be adjusted automatically with changes in altitude scale
factor.
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TABLE A-i
Summary of the Analysis of Variance for the Regression
Equation of Lateral Log RMS Error in the Takeoff Scenario

log RMSE,Iat = 1,O6 - 0.02TM - O.03MF - 0.02PT + 0.20CO + O.07CG
+ 0.05TM 2 + 0.O1MF 2 + 0.12PT2 + 0.16C0 2 + 0.07CG 2 +.04TMxMF
- 0.06TMxPT + 0.02TMxCO + 0.08TMxCG - 0.07MFxPT + 0.02MFxCO
- 0.O2MFxCG + 0.06PTxCO - 0.10PTxCG - 0.05COxCG.

Mean
Source df u

Regression 20 .5921 4.2720**

TM 1 .01461 .3324
MF 1 .0991 .7153
PT 1 .0348 .2509
CO 1 3.8131 27.51241*
CG 1 .4107 2.9631
TM 1 .2531 1.8264
MF 1 .0072 .0520
PT 1 1.7486 12.6163**
CO 1 2.8480 20.5488**
CG 1 .5303 3.8264*
TMxMF 1 .0991 .7153
TMxPT 1 .2303 1.6615
TMxCO 1 .0259 .1867
TMxCG 1 .3741 2.6991
MFxPT 1 .2781 2.0067
MFxCO 1 .0186 .1342
MFxCG 1 .0201 .1452
PTxCO 1 .2361 1.70?3
PTxCG 1 .5800 4.18471*
COxCG 1 .1887 1.3615

Residual 107 .2763

Subjects 3 4.7663 34.3899**
Lack-of-Fit 6 .2808 2.0260
Replications 98 .1386

Total 127

2 _.05
** 0 <.01
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EXPERIMENT 1 PREDICTION TIME
LATERAL ERROR

3

Lii

(x
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-3 -2 -1 0 +1 +2 -3

VARIABLE LEVEL

Figure A-1. Takeoff Scenario: Lateral log RMSE as
a function of Prediction Time.
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EXPERIMENT 1 CONTROL DOER
LATERAL ERROR

-3 -2 -1 0 +1 '-

VARIABLE LEVEL

Figure A-2. Tale2off Scenario: Lateral log RMSE as

a function of Control Order.



EXPERIMENT I CONTROL CAIN

LATERAL ERROR

-3 -2 -1 0 .1 2 -3

VARIABLE LEVEL

Figure A-3. Takeoff Scenario: Lateral log RuMSE a-

a function of Control Gain.
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Takeoff Scenaryc Lateral RMSE PTxCG

Figure A-4. Takeoff Scenario: Lateral log RMSE as
a function of Prediction Time and Control Gain.



TABLE A-2
Summary of the Analysis of Variance for the Regression
Equation of Longitudinal Log IS Error in the Takeoff Scenario

log RMSE,lon = 1.28 - 0.O2TM - 0.O3MF - 0.03?T + 0.17C0 + 0.05CG
- 0.01TM2 + 0.06MF2 + 0.05PT2 + 0.14C02 + 0.05CG2 O.O1TMxMF
- 0.02TMxPT + 0.05TMxCO + 0.O7TMxCG - 0.01MFxPT + 0.01MFxCO
+ 0.01MFxCG - O.03PTxCO - 0.10PTxCG + 0.01COxCG.

Mean
Source df Square F

Regression 20 .4182 4.9964**

TM 1 .0530 .6330
MF 1 .1007 1.2032
PT 1 .0768 .9176
CO 1 2.9123 34.8045*
CG 1 .2641 3.1558
TM 1 .0073 .0876
MF 1 .3960 4.7321"
PT 1 .2771 3.3120*
CO 1 2.3238 27.7707**
CG 1 .3340 3.9911'
TMxMF 1 .0048 .0558
TMxPT 1 .0269 .3219
TMxCO 1 .1361 1.6261
TMxCG 1 .2961 3.5383*
MFxPT 1 .0026 .0315
MFxCO 1 .0069 .0826
MFxCG 1 .0012 .0145
PTxCO 1 .0478 .5712
PTxCG 1 .5825 6.9594**
COxCG 1 .0138 .1649

Residual 107 .1502

Subjects 3 1.5808 18.8921"*
Lack-of-Fit 6 .5223 6.2401*
Replications 98 .0837

Total 127

P :s..05

• *£ .01
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EXPERIMENT 1 MAGNIFICATION FACTOR
LONGITUDINAL ERROR

2

-3 -2 -1 0 -23

VAR IABL.E LEVEL

Figure A-5. Takeoff Scenario: Longitudinal log RNSE as

a function ol. Magnification Factor.
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EXP :RIMENT I PREOICTIUiN TIME
LL'NU ITUDI NAL ERRORR

ILn

-3 -2 -1 +1 *2 +3

VARIABLE LEVEL

Figure A-6. Takeoff Scenario: Longitudinal log RMSE as
a function of Prediction Time.

41



EXPERIMCNT 1 CONTROL ORDER
LONG I rUINAL ERROR

0
-J

-3 -2 -1 0 +1 42

VARIABLE LEVEL

Figure A-7. Takeoff Scenario: Longitudinal log RMSE as
a function of Control Order.
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EXPERIMENT I CONTROL GAIN
LONGITUDINAL ERROR

2t
°J

.9..

or

-3 -2 -1 0 44 4.3

VARIABLE LEVEL

Figure A-8. Takeoff Scenario: Longitudinal log RNSE as

a function of Control Gain.



Takeoff Scenario: Longitudinal RMSE TMxCG

Figure A-9. Takeoff Scenario: Longitudinal log RMSE as
a function of Tracking Mode and Control Gain.

A



Takeoff Scenario: Longitudinal RMSE PTxCG

Figuire A-10. Takeoff Scenario: Longitudinal log ISE as
a function of Prediction Time and Control Gain.



TABLE A-3
Summary of the Analysis of Variance for the Regression
Equation of Vertical Log RIIS Error in the Takeoff Scenario

log RMSE,ver = 1.19 - 0.02TM + 0O03MF - 0.02PT + 0.06C0 + 0.01CG
+ 0.01TM 2 + 0.02MF 2 + 0.02PT 2 + 0.10C0 2 _ 0.03CG 2 - 0.03TMxMF
+ O.OOTMxPT - 0.01TMxCO + 0.02TMxCG - .0MFxPT + 0.01MFxCO
- 0.01MFxCG + O.OOPTxCO - O.05PTxCG - 0.04COxCG.

Mean
Source df Square F

Regression 20 .1246 3.6327**

TM 1 .0535 1.5611
MF 1 .0699 2.0393
PT 1 .0397 1.1586
CO 1 .3300 9.6250**
G 1 .0160 .4663

TM 1 .0032 .0937
M1 .0318 .9264
PT 1 .0327 .9547
CO 1 1.1959 34.8758**
CG 1 .0888 2.5909
TMW4F 1 .0558 1.6271
TMxPT 1 .0005 .0133
TMxCO 1 .0055 .1592
TMxCG 1 .0175 .5091
MFxPT 1 .0006 .0166
MFxCO 1 .C081 .2356
MFxCO 1 .0025 .0718
PTxCO 1 .0000 .0000
PTxCG 1 .1487 4.3353*
COxCG 1 .1183 3.4490*

Residual 107 .0636

Subjects 3 .9459 27.5849**
Lack-of-Fit 6 .1020 2.9723 * *
Replioations 98 .0343

Total 127

* £ .05

2 £ .01
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EXPERIMENT 1 CONTROL ORDER

VERTICAL ERROR

3

-3 0

VARIABLE LEVEL

Figure A-il. Takeoff Scenario: Vertical log RNSE as

a function of Control Order.
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Takeoff Scenario: Vertical RKSE PTxCG

Figure A-12. Takeoff Scenario: Vertical log RNSE as

a funct:ion of Pt-ediction Time and Control Gain.
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Takeoff Scenario: Vertical RMSE COxCG

U,

I.

Figure X-13. Takeoff Scenario: Vertical log RIMSE as
a function of Control Order and Control Gain.
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TABLE A-4
Summar'y of the Analysis of Variance for the Regression
Equation of Radial Log RMS Error in the Takeoff Scenario

log RMSE,rad = 1.23 - 0.02TM - 0.01M7 - O.06PT + 0.14CO + 0.OUCG
+ 0.02TM 2 + 0.03MF 2 + 0.06PT 2 + 0.13CO 2 + 0.03CG 2 + O.O1TMxMF
- 0.03TMxPT + O.0lTMxCO + 0.06TMxCG - 0.04MFxPT + O.O1MFxCO
- 0.O!WxCG + O.O1PTxCO - O.07PTxCG - 0.05COxCG.

Mean

Source df Square F

Regression 20 .3032 5.3474**

TM 1 .0593 1.0460
MF 1 .0161 .2837
PT 1 .1058 1.8647
CO 1 1.8345 32.3336**

1 .1747 3.0786
TM 1 .0371 .6533

IT 1 .0977 1.7216
PT 1 .4210 7.4203*
CO 1 1.9705 34.7303"
CG 1 .1429 2.5188
TMxMF 1 .0079 .1394
TMxPT 1 .0574 1.0120
TMxCO 1 .0100 .1767
TMxCG 1 .2541 4.4793*
MFxPT 1 .1167 2.0570
MFxCO 1 .0036 .0637
MFxCG 1 .0083 .1456
PTxCO 1 .0065 .1146
PTxCG 1 .3590 6.3316*
COxCG 1 .1331 2.3474

.esidual 107 .1193

Subjects 3 1.8698 32.9551**
Lack-of-Fit 6 .2662 4.6949**
Replications 98 .0567

Total 127

* . .05
P :S. .01
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EXPERIMENT I CONTRML. OROER
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eUTt A.-i. '3c Scnjario: Radia, og RIMSE as a funct ion



Takeoff Scenario: Radial RMSE TMxCG

Figure A-16. Takeoff Scenario: Radial log RUMSE as a function
of Tracking Mode and Control Gain.



Takeoff Scenario: 'adial RMSE FTxCG1

Figure A-17. Takeoff Scenario: RadiaLlIo., 'IJ'SE as a function
of Prediction Time and Control Gain.



TABLE A-5
Summary of the Analysis of Variance for the Regression
Equation of Lateral Log RMS Error in the Landing Scenario

log RMSE,la . 1.21 + 0.01TM - 0.06MF - 0.01PT + 0.14C0 + O.1CG"
- 0.02TM + O.0F 2 + 0.02PT 2  0.13C0 2 

- 0.02CC 2 - 0.01TMxMF

+ O.O1TMxPT - 0.03TMxCO + 0.O1TMxCG + 0.02MFxPT - 0.04MFxCO

- 0.01MFxCG + O.OiPTxCO - 0.OOPTxCG - O.OOCOxCG.

Mean
Source df Square F

Regression 20 .2360 4.9043**

TM 1 .0119 .2473
MF 1 .3275 6.8041*
PT 1 .0210 .4358

CO 1 1.7671 36.7169**
CG 1 .0098 .2041
TM 1 .0556 1.1563

MF 1 .1677 3.4853
PT 1 .0683 1.14195
Cc 1.8511 38.4612**

CG 1 .0537 1.1168
TMxMF 1 .0123 .2564
TMxPT 1 .0141 .2924
TMxCO 1 .0633 1.3155
TMxCG 1 .0098 .2042
MFxPT 1 .0193 .4007
MFxCO. 1 .0948 1.9695
M!xCc 1 .0020 .0423

PTxCO 1 .0091 .1900

PTxCG 1 .0000 .OCOO
':OxCG 1 .0000 .0000

Residual 107 .1454

Subjects 3 2.5759 53.5209**

Lack-of-Fit 6 .5183 10.7687 * *
Replications 98 .0481

Total 127

* n _ .05
** £2_.01
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EXPERIMENT 2 MAGNIFICATION FACTOR
LATERAL ERROR

11

I 3 -2 -1 0 *1 -2

VAR IABLE LEVEL

Figure A-18, Landing S .enario: Lateral log RMSE as a fuioction
of Magnification Factor.
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EXPERIME1JT 2 CO)NTROL ORDER
LATERAL ERROR

2.

-3 -2 -1 0 *j 3

VARIABLE LEVEL

Figure A-19. Landing Scenario: Lateral log RM~SE as a function
of Concrol Order.



TABLE A-6
Summary of the Analysis of Variance for the Regression
Eauat4on of Longitudinal Log RMS Error in the Landing Scenario

log RMSE,Ion = 1.35 + O.O1TM + 0.01MF - 0.02PT + 0.08C0 * O.OOCG
- 0.03TM 2 + 0.03MF2 + 0.04PT 2 + 0.09C0 2 

- 0.03CC 2 - O.O1TMxMF
+ 0.03TMxPT - 0.02TMxCO - 0.OLTMxCG + 0.02MFxPT + 0.OOMFxCO
+ 0.02MFxCG + 0.04PTxCO + 0.OOPTxCG + 0.O0COxCG.

Mean
Source dfSquare

Regression 20 .1235 3.0444**

TM 1 .0161 .3974
F 1 .0021 .0511
PT 1 .034u .8488
CO 1 .5649 13.9263**
CC 1 .0004 .0099
TM 1 .1124 2.7707

1 1 .1300 3.2062
PT I .1533 3.7801*
CO 1 .8583 21.15974*
CG 1 .1207 2.9798
TMxMF 1 .0015 .0365
TMxPT 1 .0574 1.4142
TxCO 1 .0364 .8971
TIxCG 1 .0927 2.2859
MFxPT 1 .0154 .3791
MFxCO 1 .0000 .0008
MFxCG 1 .0378 .9327
PTxCO 1 .1161 2.8626
?TxCG 1 .0000 .0000
COxCO 1 .0000 .0001

Residual 107 .1192

Subjects 3 2.5256 62.2670**
Lack-of-Fit 6 .2002 4.9351"*
Replications 98 .0406

Total 127

£ < .05
• -, R.01



EXPERIMENT 2 PREDICTION TIME

LONG ITUD INAL ERROR

2f

-2 j

VARIABLE LEVEL

Figure A-20. Lainding Scenario: Longicudirial log RuSE as a
function of Prediction Time.
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EXPERIMENT 2 CONTROL. ORDER
LONG ITU INIAL ERROR
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Figure A-21. Landing Scenario: Longitudinal log P-1SE as a
function of Control order.



TABLE A-7
Summary of the Analysis of Variance for the Regression
Equation of Vertical Log RMS Error in the Landing Scenario

log RMSE,ver = 0.93 - 0.02TM + O.01MF + 0.O3PT + 0.06CO - 0.03CG
- O.OOTM 2 + .01MF2 . 0.03PT 2 - 0.05CO 2 - 3.OOCG 2  0.O3TMxMF
- O.O1TMxPT - O.O1TMxCO - O.O1TMxCG + 0.00MFxPT - 0.01MFxCO

+ 0.01MFxCG - 0.02PTxCO + 0.01?TxCG - 0.02COxCG.

Mean
Source Square F

Regression 20 .0583 2.2863*

TM 1 .0444 1.7389
1 .0046 .1814

PT 1 .0900 3.5223*
CO 1 .3508 13.7320**
CG 1 .0763 2.9882
TM 1 .0001 .0051
MF .0137 .5358
?T 1.2.. 4.4988"
cc .2597 "0.1667**
CG 1 .0004 .0154
TMxMF 1 .0703 2.7508
TMxPT 1 .0111 .4326
TMxCO 1 .0012 .0456
TMxCG 1 .0026 .1013
MFxPT 1 .0004 .0147
MTxCO 1 .0138 .5416
MFxCG 1 .0102 .4003
PTxCO 1 .0235 .9209
PTxCG 1 .0080 .3137
COxCG 1 .0344 1.3490

Residual 107 .0428

Subjepts 3 .6202 24.2812*
Lack-of-Fit 6 .0357 1.4000
Replications 98 .0255

Total 127

r. .05
S* .2e.01
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EXPERIMENT 2 PREOICTION TIME
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Figure A-22. Landing Scenario: Vertical log RMSE as a
funiction of Prediction Time.
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EXPERIMENT Z CONTROL OROER
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Figure A-23. Landing Scenario: Vertical log RMSE as a

function of Control Order.
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TABLE A-8
Summary of the Analysis of Variance for the Regression
Equation of Radial Log RMS Error in the Landing Scenarilo

log RMSE,rad = 1.43 + O.OOTM - 0.03MF - 0.01PT O.YICO + 0.OOCG
- 0.03TM2 + 0.03MF 2 + 0.03PT 2 + 0.1OCO2 - 0.03CG + 0.OOTMxMF
+ O.O1TMxPT - 0.02TMxCO - O.O1TMxCG + O.01.MFxPT - 0.03MFxCO
+ O.OiMFxCG + 0.03PTxCO - O.OOPTxCG - O.OOCOxCG.

Mean
Source df SFuare

Regression 20 .1553 5.8977**

TM 1 .0000 )01
MF 1 .0711 .001
PT 1 .0035 .1344
CO 1 1.1578 43.9575**
CG 1 .0004 .0163
TM 1 .1015 3.8527*
MF 1 .1181 4.4824*
PT 1 .0910 3.4536*
CO 1 1.1911 45.2202**
CG 1 .0807 3.0628
TMxMF 1 .008 .0317
TMxPT 1 .0125 .4731

TMxCO 1 .0361 1.3688
TMxCG 1 .0101 .3844
MFxPT .0118 .4480
MFxCO .0400 1.5167
IFxCG 1 .0049 .!S54
?TxCO 1 .0440 1.6723

PTxCG 1 .0001 .0041
COxCG 1 .0002 .0082

Residual 107 .0964

Subjects 3 2.0893 79.3227**

Lack-of-Fit 6 .2440 9.2647#*
Rep!ications 98 .0263

Total 127

p*1 2 . .01



EXPERIMENT 2 TRACKING MODE
RADIAL ER~ROR
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1 i,,turL'Ac Landing Sc nario; Radial 10Fo P-MSE as a

function Tracking Mode.



EXPERIMENT 2 PREDICTION TIME
RADIAL ERROR
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Figure A-25. Lainding Scenario: 1Radial log RMSE as a

function of Prediction Timi-.
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EXPERIMENT 2 CONTROL ORDER

RAOIAL ERROR
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-3 -Z -I 0 *I Z +3

VARIABLE LEVEL

Figuru A-2b. Landing Scenario: Radial log RMSE as a

function of Control Order.
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TABLE A-9
Summary of the Analysis of Variance for the Regression
Equation cf Lateral Log RFIS Error in the SID Scenario

log RMSE,!at = 1.08 + 0.OL!TM - 0.07MF - 0.08PT + 0.08CO + O.02CG
- 0.01TM 2 + 0.01MF2 + 0.02PT 2 + 0.10C0 2 _ O.OICG 2 + 0.O8TMxMF
- 0.02TMxPT + 0.02TMxCO - 0.03TMxCG + 0.06MFxPT - 0.01MFxCO
+ 0.01MFxCG . O.0OTxCO + 0,01PTxCG - O0.4COxCG.

Mean
Source df Square F

egression 20 .2098 3.9407**

TM 1 .1876 3.5804*
,F 1 .5319 iO.15o8"*
PT 1 .6844 13.0614'*

CO 1 .6096 11.6332**
CG 1 .C304 .5799
TI 1 ,0112 .2144
ME 1 .0111 .2114

T .0487 .9294
CO 1 1,0941 20.87911*
CG 1 .0046 .0884
TMxMF 1 .4512 8.6097**
TMxPT 1 .0157 .2994
TMxCO 1 .0270 .5148
T,.xCG 1 .0680 1.2975
MFxPT 1 .2421 L',01950
MFxCO 1 .0119 .2267
MFxCG 1 .0028 .0526
PTxCO 1 .0007 .0142
PTxCC 1 .0015 .0286
COxCG 1 .0867 1.6546

Residual 107 .0626

Subjects 3 .1086 2.0725
Lack-of-Fit 6 .2067 3.9447**
Replications 98 .0521

Total 127

P* ± .05
** rn .01



EXPERIMENT 3 TRACKING MODE
LATERAl. ERROR

3-,

2

-3 -2 -1 0 .1 -2 .3

VARIABLE LEVEL

Figure A-27. SID Scenario: LaCetal log RIMSE as a function

of Tracking Mode.
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EXPERIMENT 3 MACNIFICATION FACTOR
LATERAL ERROR

w

a T

0

I -+ - - 3

VARIABLE LEVEL

Figurv- A-28. SID Scenario: Lateral log RMSE as a function

of Magnification Factor.
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EXPERIMENT 3 PREDICTION TIME

LATERAL ERROR

ILO

-3 -2 -1 0 +

VARIABLE LEVEL

Figure A-29. STD Scenario: Lateral log R1MSE. as a function
of Prediction Time.

71



EXPERIMENT 3 CONTROL OROER
LATERAL ERROR

U1

0

-3 '2 -1 0+2-

VARIABLE LEVEL

Figure A-30. SID Scenario: Lateral log RMKSE as a function
of Control Order.
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SID Scenario: Lateral RMSE TMxMF1

_________ ________

Figure A-31. SID Scenario: Lateral log RMSE as a function
of Tracking Mode and Magnification Factor.
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SID Scenario: Lateral RMSE MFxPT

Figure A-32. SID Scenario: Lateral log RNSE as a function
of Magnification and Prediction Time.
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TABLE A-10
Summary of the Analysis of Variance for the Regression
Equation of Longitudinal Log RMS Error in the SID Scenario

log RMSElon = 1.14 + 0,O5TM - 0.06MF - 0.04PT + 0.01CO + 0.02CG
- O.00TM 2 + O.01MF 2 0.03PT 2 + O.08C0 2 + 0.02CC 2 + 0.O4TMxMF
- O.OOTMxPT - 0.02TMxCO - 0.02TMxCG + 0.05MFxPT - 0.03MFxCO
- O.02MFxCG - 0.06PTxCO - 0.05PTxCG - 0.02COxCG.

Mean
Source df Square F

Regression 20 .1256 3.5182**

TM 1 .2017 5.6500*

MF 1 .3838 10.7526**
PT 1 .1643 4.6043*
CO 1 .0073 .2059
CG 1 .0470 1.3166
TM 1 .0013 .0378

F 1 .0032 .0900
PT I . - 3.SC59*
CO 1 .

CG 1 .035" .9909
TMxMF 1 .0805 2.2554
TMxPT 1 .0000 .0014
TMxCO 1 .0359 1.0061
TMxCG 1 .0193 .53914
MFxPT 1 .1584 4.4381*

MFxCO 1 .01158 1.2831
MFxCG 1 .0218 .6116
PTxCO 1 .1951 5.14674*

PTxCG ' .1606 4.4986*
COxCG 1 .0390 1.O924

Residual 107 .0402

Subjects 3 .0416 1.1879

Lack-of-Fit 6 .1122 3.1429"*

Replications 98 .0357

Total 127

* £ .05

* .01
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EXPERIMENT 3 TRACKING MOOE
LONG ITU I NAL ERROR

-3 -2 -1 0 +3 .

VARIABLE LEVEL

Figure A-33. SID Scenario: Longitudinal log RMSE as a function

of Tracking Maode.
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EXPERIMENT 3 MAGNIFICAT"ON FACTOR
LONGITUDINAL ERROR

3

1

-3 -2 -1 0 4i *2 V3

VARIABLE LEVEL

Figure A-34. SID Scenario: Longitudinal log RRSE ;s a function

of Magnification Factor.
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EXPERIMENT 3 PREDICTION TIME
_ONGITUOINAL ERROR

S I,

-3 0 *1 -2 +3

1AR IABLE LEVEL

Y>!gare A-35. SI) Sccnario: Longitudinal log RMSE as a fmictioi

uf P-ediction Time.



EXPERIM1ENT 3 CONTROL- OFCERE
LON I TUO lUAL ERRCP

3-

LL)
-J

--3 -2 --1 U +1 -2

VAR1AOLEC LE~VEL

Figwi cu A-3b. SID 'Sceniario: 109g "Lu'.'. "JI:; 3o
of Cortcroi Order.



SID Scenario- LongituOirm-l IRMSE M 17x PT

of Mag~ if ic t. i o Fa -o, -



S1D Scenario: Longitudinal RMISE PTxCO

Figure A-36. SID Scenario: Longitudinal log RM1SE as a fanction

olftPediction Timec and Contrul Order.



SID Scenario: Longitudinal RMSE PTXCG

cn

-a x 1 s

FigUre A~-39. SID Scenario: Longitudinal lug RMS12 ar a function
of Prediction Time and Control Gain.



TABLE A-11
Summary of the Analysis of Vz riancc for the Regression
Equation of Vertical Log RMS Error in the SID Scenario

log RMSE,ver 1.10 - O.O2TM + 0.01MF - O.OIPT - O.OOCO + 0.02CC
+ 0.0T.M2 + -. 01MF 2 

- O.O1PT 2 
+ .08CO 2  O.01CG2 

- O.O4TMxMF

+ O.01TMxPT - O.O3TMxCC - 0.OOTMxCG + 0.034FxPT O.02MFxCO
+ O.OOMFxCG - O.D4PTxCO + O.OOPTxCG +- .01COxCG.

Mean

Source df Square F

Regression 20 .0686 1.3251

TM 1 .0547 1.0601

MF 1 ,0077 .1486
PT 1 .0101 ,1954
CO 1 .0003 .0052
CG 1 .0339 .6567
TM 1 .0002 .0041
F 1 .0241 .4662

PT 1 .0260 .5035
CO 1 .3003 15.5055**

CG 1 .0123 .2385
TMxMF 1 .1221 2.3654
TMxPT 1 .0021 .0414

TMxCC 1 .0658 1.27146
TMxCG 1 .0009 .0183
MFxPT 1 .0421 .8162

MFxCO 1 .0222 .4301
MFxCG 1 .0001 .0012
PTxCO 1 .0923 1.7875
PTxCG 1 .0002 .0039
COxCG 1 .0059 .1143

Residual 107 .07114

Subjects 3 .3647 7.0651**

Lack-of-Fit 6 .2486 4.8178**
Replications 98 .0516

Total 127

S* p . .05



EXPE71MENT 3 CONTROL ORDER
VERTICAL ERROR

3,

z

-3 -2 - 0 +-1 +2 +3

VARIABLE LEVEL

Figur-~ A-40, SID Scenario: Vertical log RMSE as a function

of Gontrol COrdeL .



TABLE A-12
Summary of the Analysis of Variance for the Rcgression
Equation of Radial Log RMS Error in the SID Scenario

log RMSE0-ad = 1.32 + 0.02TM - 0.35MW - O.05PT + 0.04CO + 0.02CG
- 0.OOTM 2 + 0.OOMF 2 + 0.02PT 2 , 0.09C0 2 + 0.02CC 2 + 0.03T×xMF
- O.O1TMxPT - 0.O1TMxCO - O.O2TMxCG + 0.06f' xPT - 0.02MFxCO
- 0.O1MFxCL - O.04PTxCO - 0.02PTxCG - 0.OICOxCG.

Mean
Source of Square

Regression 20 .1122 4.0215**

TM 1 .0480 1.7229
MF 1 .2411 8.6509**
PT 1 .2174 7.8025**
CO 1 .1348 4.8358*
CG 1 .0577 2.0693
TM 1 .0008 .0275
MF 1 .0003 ,0121
PT 1 .0516 1.S523
CO 1 .9698 34.7998 * *

CG 1 .0310 1.1126
TMxMF 1 .0725 2.6008
TMxPT 1 .0083 .2980
TMxCO 1 .0065 .2347
T~xCC 1 .0367 1.3176
MFxPT 1 .2008 7.2056**
MFxCO 1 .0227 .81l41
MFxCG 1 .0018 .0629
PTxCO 1 .0968 3.4733*
PTxCG 1 .03811 1.3763

COxCG 1 .0068 .2437

ResIdual 107 .0354

Subjects 3 .0248 .8900
Lac --of-Fit 6 1641 5,8817N*
Replications 98 .0279

Total 127

* p <.05
I* £ =j.01



EXPERIMENT 3 MAGNIFICATION FACTOR
RADIAL ERROR

Lii

'2
Cr

-3 -2 -1 0 '-1 -2 -.

VARIABLE LEVEL

Figure A-41. SID Scenario: Radial log RMSE as a function

of Magnification Factor.



EXPERIMENT 3 PREDICTION TIME
RADIAL ERROR

3T

2

LiJ

-3 -2 -1 0 "-2

VARIABLE LEVEL

Figure A-42. SID Scenario: Radial log RMSE as a function

of Prediction Time.



EXPERIMENT 3 CONTRO. ORDER
RAOIAL ERROR

3

w

U)Z

VARIABUE LE-VEL

Figure A-43. SID Scenario: Radial log RMSE as a function
of Control Order-



SIDJ Scenario: Radial RMSE NFxPT

Figure A-44. STD Scenario: Radial log RNSE as a function
of Magnification Factor and Prediction Time.



SID Scenario: Radial RMSE PTxCO

Figure A-45. SID Scenar-io; Radial log RH-SE as a functioni
of Prediction Time and Control Order.
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